

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Authorize Sauce 0.4.1 documentation

Authorize Sauce

The secret sauce for accessing the Authorize.net API. The Authorize APIs for
transactions, recurring payments, and saved payments are all different and
awkward to use directly. Instead, you can use Authorize Sauce, which unifies
all three Authorize.net APIs into one coherent Pythonic interface. Charge
credit cards, easily!

>>> # Init the authorize client and a credit card
>>> from authorize import AuthorizeClient, CreditCard
>>> client = AuthorizeClient('285tUPuS', '58JKJ4T95uee75wd')
>>> cc = CreditCard('4111111111111111', '2018', '01', '911', 'Joe', 'Blow')
>>> card = client.card(cc)

>>> # Charge a card
>>> card.capture(100)
<AuthorizeTransaction 2171829470>

>>> # Save the card on Authorize servers for later
>>> saved_card = card.save()
>>> saved_card.uid
'7713982|6743206'

>>> # Use a saved card to auth a transaction, and settle later
>>> saved_card = client.saved_card('7713982|6743206')
>>> transaction = saved_card.auth(200)
>>> transaction.settle()

Saucy Features

	Charge a credit card

	Authorize a credit card charge, and settle it or release it later

	Credit or refund to a card

	Save a credit card securely on Authorize.net’s servers

	Use saved cards to charge, auth and credit

	Create recurring charges, with billing cycles, trial periods, etc.

Thanks to Chewse [https://www.chewse.com/] for supporting the development and open-sourcing of this library. Authorize Sauce is released under the MIT License [http://www.opensource.org/licenses/mit-license].

Contents

	Installation
	Install with pip

	Install from source

	Requirements

	Introduction
	First, some terminology

	Initialize the client

	Charge a credit card

	Authorize a credit card

	Save a credit card

	Create a recurring payment

	Payment data
	Credit card

	Address

	Authorize interface
	Authorize client

	Credit card

	Transaction

	Saved card

	Recurring charge

	Exceptions

	Development
	Getting started

	Running the tests

	Testing in all supported Python versions

	Authorize.net documentation

	Submitting bugs and patches

 Copyright 2012, Jeff Schenck.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Authorize Sauce 0.4.1 documentation

Installation

Install with pip

Simply use pip [http://www.pip-installer.org/] to install the authorize package

pip install authorizesauce

Install from source

Download or clone the source from Github and run setup.py install

git clone http://github.com/jeffschenck/authorizesauce.git
cd authorizesauce
python setup.py install

Requirements

Authorize Sauce has two external dependencies:

	six [http://pythonhosted.org/six/]

	suds-jurko [https://bitbucket.org/jurko/suds]

If you want to build the docs or run the tests, there are additional
dependencies, which are covered in the Development section.

 Copyright 2012, Jeff Schenck.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Authorize Sauce 0.4.1 documentation

Introduction

Here you’ll find an easy introduction to charging credit cards with Authorize
Sauce. We’ll take you through the basics of charging, saving cards, and
creating recurring payments.

For the full scoop on interacting with the Authorize Sauce client, see the
Authorize interface documentation.

First, some terminology

The payments world uses some pretty wonky terms for working with credit cards,
so let’s define our terms right up front.

	capture

	The credit card is first authorized for the given transaction amount, and
if approved, is automatically submitted for settlement. This is very much
like when a store clerk swipes your card at the register.

	auth

	The credit card is temporarily authorized for a given amount without
actually submitting it for settlement. This allows you to guarantee you’ll
be able to charge the card, but to hold off in case you later need to
release the authorization or charge a lower amount. This transaction is
not completed until you explicitly submit it for settlement.

	settle

	A previous authorization transaction is submitted for settlement. This can
be for any amount up to the original authorization amount.

	void

	Cancel a previous authorization transaction.

	credit

	Refunds part or all of a previously settled transaction. (Note that it
must actually be settled, not just submitted for settlement. This can take
up to 24 hours.)

Initialize the client

Whatever you plan to do, your first step will be to create the
AuthorizeClient instance using
your Authorize.net API login and transaction key:

>>> from authorize import AuthorizeClient
>>> client = AuthorizeClient('285tUPuS', '58JKJ4T95uee75wd')

Charge a credit card

Using the Authorize.net client, we can now create a
CreditCard object and create a $100
charge with it. We’ll also store a reference to the transaction just in case
we need to refund it later:

>>> from authorize import CreditCard
>>> cc = CreditCard('4111111111111111', '2018', '01', '911', 'Joe', 'Blow')
>>> transaction = client.card(cc).capture(100)
>>> # Save the uid for this charge in case we need to refund it later
>>> transaction.uid
'2171830830'

Oh crap, someone wants a refund. That sucks for business, but at least it’s
not hard to do in Awesome Sauce:

>>> # Reference the transaction from earlier
>>> transaction = client.transaction('2171830830')
>>> # Refund the earlier transaction, passing in the last four digits of the card for verification
>>> transaction.credit('1111', 100)
<AuthorizeTransaction 2171830830>

Authorize a credit card

If you want to simply authorize a credit card for a certain amount, but don’t
want to actually settle that charge until later, we make that easy too! Let’s
start by authorizing a $100 payment:

>>> cc = CreditCard('4111111111111111', '2018', '01', '911', 'Joe', 'Blow')
>>> transaction = client.card(cc).auth(100)
>>> # Save the uid for this auth so we can settle it at a later date
>>> transaction.uid
'2171830878'

So let’s say we’ve rendered services and we’re ready to settle that $100
transaction from earlier. Easy:

>>> # Reference the transaction from earlier
>>> transaction = client.transaction('2171830878')
>>> transaction.settle()
<AuthorizeTransaction 2171830878>

But what if the total your customer owed came out to be less than that
original $100 authorization? You can just as easily capture a smaller amount
than the original authorization:

>>> # Reference the transaction from earlier
>>> transaction = client.transaction('2171830878')
>>> transaction.settle(50)
<AuthorizeTransaction 2171830878>

Save a credit card

Let’s say you want to save a customer’s credit card to make it easier for them
to check out next time they’re on your site:

>>> saved_card = client.card(cc).save()
>>> # Save the uid of the saved card so you can reference it later
>>> saved_card.uid
'7715743|6744936'

Now all you have to do is save that uid in your database, instead of
storing sensitive credit card data, and you can charge the card again later.

>>> # Reference the saved card uid from earlier
>>> saved_card = client.saved_card('7715743|6744936')
>>> # Let's charge another $500 to this card for another purchase
>>> saved_card.capture(500)
<AuthorizeTransaction 2171830935>

If your user ever requests that you delete this card from its secure storage
on Authorize.net’s servers, we can do that too:

>>> saved_card = client.saved_card('7715743|6744936')
>>> saved_card.delete()

Create a recurring payment

Next you decide you want recurring revenue, so you’re going to charge your
users a monthly $20 subscription fee starting Dec 1, 2012. This is simple to
set up:

>>> from datetime import date
>>> card = client.card(cc)
>>> card.recurring(20, date(2012, 12, 1), months=1)
<AuthorizeRecurring 1396734>

Again, if you want to update the recurring payment, this is easy to do. Let’s
say we need to increase the monthly rate to $25:

>>> # Reference the recurring uid from earlier
>>> recurring = client.recurring('1396734')
>>> recurring.update(amount=25)

And if the user cancels their service, we can end their recurring payment:

>>> recurring = client.recurring('1396734')
>>> recurring.delete()

There are many other available options when setting up recurring payments,
such as trial periods and limited number of payments. For details, see the
AuthorizeCreditCard.recurring
method documentation.

 Copyright 2012, Jeff Schenck.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Authorize Sauce 0.4.1 documentation

Payment data

This module provides the data structures for describing credit cards and
addresses for use in executing charges.

Credit card

	
class authorize.data.CreditCard(card_number=None, exp_year=None, exp_month=None, cvv=None, first_name=None, last_name=None)

	Represents a credit card that can be charged.

Pass in the credit card number, expiration date, CVV code, and optionally
a first name and last name. The card will be validated upon instatiation
and will raise an
AuthorizeInvalidError
for invalid credit card numbers, past expiration dates, etc.

	
card_type

	The credit card issuer, such as Visa or American Express, which is
determined from the credit card number. Recognizes Visa, American
Express, MasterCard, Discover, and Diners Club.

	
expiration

	The credit card expiration date as a datetime object.

	
safe_number

	The credit card number with all but the last four digits masked. This
is useful for storing a representation of the card without keeping
sensitive data.

	
validate()

	Validates the credit card data and raises an
AuthorizeInvalidError
if anything doesn’t check out. You shouldn’t have to call this
yourself.

Address

	
class authorize.data.Address(street=None, city=None, state=None, zip_code=None, country='US')

	Represents a billing address for a charge. Pass in the street, city, state
and zip code, and optionally country for the address.

 Copyright 2012, Jeff Schenck.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Authorize Sauce 0.4.1 documentation

Authorize interface

This is your main interface to the Authorize.net API, where you feed in your
credentials and then interact to create transactions and so forth. You will
need to sign up for your own developer account and credentials at
Authorize.net [http://developer.authorize.net/].

Warning

To use the saved card and recurring billing functionality, you must have
either or both set up in your Authorize.net account. You must sign up your
account for the CIM (Customer Information Manager) service and/or the ARB
(Automated Recurring Billing) service, each of which may be an additional
monthly charge. See the Authorize.net documentation for additional
information.

Authorize client

	
class authorize.client.AuthorizeClient(login_id, transaction_key, debug=True, test=False)

	Instantiate the client with your login ID and transaction key from
Authorize.net.

The debug option determines whether to use debug mode
for the APIs. This should be True in development and staging, and
should be False in production when you want to actually process credit
cards. You will need to pass in the appropriate login credentials
depending on debug mode. The test option determines whether to run
the standard API in test mode, which should generally be left False,
even in development and staging environments.

	
card(credit_card, address=None, email=None)

	To work with a credit card, pass in a
CreditCard instance, and
optionally an Address instance. This
will return an
AuthorizeCreditCard
instance you can then use to execute transactions.
email is only required for those using European payment processors.

	
recurring(uid)

	To update or cancel an existing recurring payment, pass in the uid
of the recurring payment as a string. This will return an
AuthorizeRecurring
instance you can then use to udpate or cancel the payments.

	
saved_card(uid)

	To create a new transaction from a saved card, pass in the uid of
the saved card as a string. This will return an
AuthorizeSavedCard
instance you can then use to auth, capture, or create a credit.

	
transaction(uid)

	To perform an action on a previous transaction, pass in the uid of
that transaction as a string. This will return an
AuthorizeTransaction
instance you can then use to settle, credit or void that transaction.

Credit card

	
class authorize.client.AuthorizeCreditCard(client, credit_card, address=None, email=None)

	This is the interface for working with a credit card. You use this to
authorize or charge a credit card, as well as saving the credit card and
creating recurring payments.

Any operation performed on this instance returns another instance you can
work with, such as a transaction, saved card, or recurring payment.

	
auth(amount)

	Authorize a transaction against this card for the specified amount.
This verifies the amount is available on the card and reserves it.
Returns an
AuthorizeTransaction
instance representing the transaction.

	
capture(amount)

	Capture a transaction immediately on this card for the specified
amount. Returns an
AuthorizeTransaction
instance representing the transaction.

	
recurring(amount, start, days=None, months=None, occurrences=None, trial_amount=None, trial_occurrences=None)

	Creates a recurring payment with this credit card. Pass in the
following arguments to set it up:

	amount

	The amount to charge at each interval.

	start

	The date or datetime at which to begin the recurring
charges.

	days

	The number of days in the billing cycle. You must provide either
the days argument or the months argument.

	months

	The number of months in the billing cycle. You must provide either
the days argument or the months argument.

	occurrences (optional)

	The number of times the card should be billed before stopping. If
not specified, it will continue indefinitely.

	trial_amount (optional)

	If you want to charge a lower amount for an introductory period,
specify the amount.

	trial_occurrences (optional)

	If you want to charge a lower amount for an introductory period,
specify the number of occurrences that period should last.

Returns an
AuthorizeRecurring
instance that you can save, update or delete.

	
save()

	Saves the credit card on Authorize.net’s servers so you can create
transactions at a later date. Returns an
AuthorizeSavedCard
instance that you can save or use.

Transaction

	
class authorize.client.AuthorizeTransaction(client, uid)

	This is the interface for working with a previous transaction. It is
returned by many other operations, or you can save the transaction’s
uid and reinstantiate it later.

You can then use this transaction to settle a previous authorization,
credit back a previous transaction, or void a previous authorization. Any
such operation returns another transaction instance you can work with.

Additionally, if you need to access the full raw result of the transaction
it is stored in the full_response attribute on the class.

	
credit(card_number, amount)

	Creates a credit (refund) back on the original transaction. The
card_number should be the last four digits of the credit card
and the amount is the amount to credit the card. Returns an
AuthorizeTransaction
instance representing the credit transaction.

Credit transactions are bound by a number of restrictions:

	The original transaction must be an existing, settled charge. (Note
that this is different than merely calling the
AuthorizeTransaction.settle
method, which submits a payment for settlement. In production,
Authorize.net actually settles charges once daily. Until a charge is
settled, you should use
AuthorizeTransaction.void
instead.)

	The amount of the credit (as well as the sum of all credits against
this original transaction) must be less than or equal to the
original amount charged.

	The credit transaction must be submitted within 120 days of the date
the original transaction was settled.

	
settle(amount=None)

	Settles this transaction if it is a previous authorization. If no
amount is specified, the full amount will be settled; if a lower
amount is provided, the lower amount will be settled; if a higher
amount is given, it will result in an error. Returns an
AuthorizeTransaction
instance representing the settlement transaction.

	
void()

	Voids a previous authorization that has not yet been settled. Returns
an
AuthorizeTransaction
instance representing the void transaction.

Saved card

	
class authorize.client.AuthorizeSavedCard(client, uid)

	This is the interface for working with a saved credit card. It is returned
by the
AuthorizeCreditCard.save
method, or you can save a saved card’s uid and reinstantiate it later.

You can then use this saved card to create new authorizations, captures,
and credits. Or you can delete this card from the Authorize.net database.
The first three operations will all return a transaction instance to work
with.

You can also retrieve payment information with the
AuthorizeSavedCard.get_payment_info <authorize.client.AuthorizeSavedCard.get_payment_info()
method.

You can update this information by setting it and running the
AuthorizeSavedCard.update
method.

	
auth(amount, cvv=None)

	Authorize a transaction against this card for the specified amount.
This verifies the amount is available on the card and reserves it.
Returns an
AuthorizeTransaction
instance representing the transaction.

	
capture(amount, cvv=None)

	Capture a transaction immediately on this card for the specified
amount. Returns an
AuthorizeTransaction
instance representing the transaction.

	
delete()

	Removes this saved card from the Authorize.net database.

Recurring charge

	
class authorize.client.AuthorizeRecurring(client, uid)

	This is the interface for working with a recurring charge. It is returned
by the
AuthorizeCreditCard.recurring
method, or you can save a recurring payment’s uid and reinstantiate it
later.

The recurring payment will continue charging automatically, but if you
want to make changes to an existing recurring payment or to cancel a
recurring payment, this provides the interface.

	
delete()

	Cancels any future charges from this recurring payment.

	
update(amount=None, start=None, occurrences=None, trial_amount=None, trial_occurrences=None)

	Updates the amount or status of the recurring payment. You may provide
any or all fields and they will be updated appropriately, so long as
none conflict. Fields work as described under the

	amount (optional)

	The amount to charge at each interval. Will only be applied to
future charges.

	start (optional)

	The date or datetime at which to begin the recurring
charges. You may only specify this option if the recurring charge
has not yet begun.

	occurrences (optional)

	The number of times the card should be billed before stopping. If
not specified, it will continue indefinitely.

	trial_amount (optional)

	If you want to charge a lower amount for an introductory period,
specify the amount. You may specify this option only if there have
not yet been any non-trial payments.

	trial_occurrences (optional)

	If you want to charge a lower amount for an introductory period,
specify the number of occurrences that period should last. You may
specify this option only if there have not yet been any non-trial
payments.

 Copyright 2012, Jeff Schenck.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Authorize Sauce 0.4.1 documentation

Exceptions

	
class authorize.exceptions.AuthorizeError

	Base class for all errors.

	
class authorize.exceptions.AuthorizeConnectionError

	Error communicating with the Authorize.net API.

	
class authorize.exceptions.AuthorizeResponseError

	Error response code returned from API.

	
class authorize.exceptions.AuthorizeInvalidError

	Invalid information provided.

 Copyright 2012, Jeff Schenck.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Authorize Sauce 0.4.1 documentation

Development

All assistance is appreciated! New features, documentation fixes, bug reports,
bug fixes, and more are graciously accepted.

Getting started

To get set up, fork the project on our Github page [https://github.com/jeffschenck/authorizesauce]. You can then
install from source by following the instructions in Installation. There are
a few additional dependencies for compiling the docs and running the tests:

	mock [http://www.voidspace.org.uk/python/mock/]

	unittest2 [http://pypi.python.org/pypi/unittest2] (if on Python < 2.7)

	sphinx [http://sphinx.pocoo.org/] (for docs only)

You can install all dependencies using pip [http://www.pip-installer.org/] from the requirements.txt
file:

pip install -r requirements.txt

Running the tests

Once you’re all installed up, ensure that the tests pass by running them. You
can run the local unit tests with the following command:

./tests/run_tests.py

However, the above command skips some integration tests that actually hit the
remote Authorize.net test server. This is done so the main test suite can be
run quickly and without an internet connection. However, you should
occasionally run the full test suite, which can be done by setting an
environment variable:

AUTHORIZE_LIVE_TESTS=1 ./tests/run_tests.py

Testing in all supported Python versions

Since Authorize Sauce supports multiple Python versions, running the tests in
your currently installed Python version may not be enough. You can use tox [https://tox.readthedocs.org/en/latest/]
to automate running the tests in all supported versions of Python.

First, install tox, if you haven’t already:

pip install tox
or easy_install tox

Running it is simple:

tox

If you want to only test against a subset of Python versions, you can do so:

tox -e py27,py34

As above, you can set an environment variable to run the full test suite in
every supported Python version:

AUTHORIZE_LIVE_TESTS=1 tox

Note: tox requires that the tested Python versions are already present on
your system. If you need to install one or more versions of Python, pyenv [https://github.com/yyuu/pyenv]
or (for Ubuntu) the deadsnakes PPA [https://launchpad.net/~fkrull/+archive/ubuntu/deadsnakes] can be helpful.

Authorize.net documentation

The Authorize.net documentation somehow manages to be both overly verbose and
fairly uninformative. That said, you can find it here:

	Developer site [http://developer.authorize.net/]

	Advanced Integration Method [http://www.authorize.net/support/AIM_guide.pdf]

	Customer Information Manager [http://www.authorize.net/support/CIM_SOAP_guide.pdf]

	Automated Recurring Billing [http://www.authorize.net/support/ARB_SOAP_guide.pdf]

Submitting bugs and patches

If you have a bug to report, please do so on our Github issues [https://github.com/jeffschenck/authorizesauce/issues] page. If
you’ve got a fork with a new feature or a bug fix with tests, please send us a
pull request.

 Copyright 2012, Jeff Schenck.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Authorize Sauce 0.4.1 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 authorize	

 	
 	
 authorize.client	

 	
 	
 authorize.data	

 Copyright 2012, Jeff Schenck.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Authorize Sauce 0.4.1 documentation

Index

 A
 | C
 | D
 | E
 | R
 | S
 | T
 | U
 | V

A

 	

 	Address (class in authorize.data)

 	auth() (authorize.client.AuthorizeCreditCard method)

 	

 	(authorize.client.AuthorizeSavedCard method)

 	authorize.client (module)

 	authorize.data (module)

 	AuthorizeClient (class in authorize.client)

 	AuthorizeConnectionError (class in authorize.exceptions)

 	AuthorizeCreditCard (class in authorize.client)

 	

 	AuthorizeError (class in authorize.exceptions)

 	AuthorizeInvalidError (class in authorize.exceptions)

 	AuthorizeRecurring (class in authorize.client)

 	AuthorizeResponseError (class in authorize.exceptions)

 	AuthorizeSavedCard (class in authorize.client)

 	AuthorizeTransaction (class in authorize.client)

C

 	

 	capture() (authorize.client.AuthorizeCreditCard method)

 	

 	(authorize.client.AuthorizeSavedCard method)

 	card() (authorize.client.AuthorizeClient method)

 	card_type (authorize.data.CreditCard attribute)

 	

 	credit() (authorize.client.AuthorizeTransaction method)

 	CreditCard (class in authorize.data)

D

 	

 	delete() (authorize.client.AuthorizeRecurring method)

 	

 	(authorize.client.AuthorizeSavedCard method)

E

 	

 	expiration (authorize.data.CreditCard attribute)

R

 	

 	recurring() (authorize.client.AuthorizeClient method)

 	

 	(authorize.client.AuthorizeCreditCard method)

S

 	

 	safe_number (authorize.data.CreditCard attribute)

 	save() (authorize.client.AuthorizeCreditCard method)

 	

 	saved_card() (authorize.client.AuthorizeClient method)

 	settle() (authorize.client.AuthorizeTransaction method)

T

 	

 	transaction() (authorize.client.AuthorizeClient method)

U

 	

 	update() (authorize.client.AuthorizeRecurring method)

V

 	

 	validate() (authorize.data.CreditCard method)

 	

 	void() (authorize.client.AuthorizeTransaction method)

 Copyright 2012, Jeff Schenck.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/comment.png

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		Authorize Sauce 0.4.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Jeff Schenck.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/down-pressed.png

